Glial cell aquaporin-4 overexpression in transgenic mice accelerates cytotoxic brain swelling.
نویسندگان
چکیده
Aquaporin-4 (AQP4) is a water transport protein expressed in glial cell plasma membranes, including glial cell foot processes lining the blood-brain barrier. AQP4 deletion in mice reduces cytotoxic brain edema produced by different pathologies. To determine whether AQP4 is rate-limiting for brain water accumulation and whether altered AQP4 expression, as occurs in various pathologies, could have functional importance, we generated mice that overexpressed AQP4 in brain glial cells by a transgenic approach using the glial fibrillary acid protein promoter. Overexpression of AQP4 protein in brain by approximately 2.3-fold did not affect mouse survival, appearance, or behavior, nor did it affect brain anatomy or intracranial pressure (ICP). However, following acute water intoxication produced by intraperitoneal water injection, AQP4-overexpressing mice had an accelerated progression of cytotoxic brain swelling, with ICP elevation of 20 +/- 2 mmHg at 10 min, often producing brain herniation and death. In contrast, ICP elevation was 14 +/- 2 mmHg at 10 min in control mice and 9.8 +/- 2 mmHg in AQP4 knock-out mice. The deduced increase in brain water content correlated linearly with brain AQP4 protein expression. We conclude that AQP4 expression is rate-limiting for brain water accumulation, and thus, that altered AQP4 expression can be functionally significant.
منابع مشابه
Three distinct roles of aquaporin-4 in brain function revealed by knockout mice.
Aquaporin-4 (AQP4) is expressed in astrocytes throughout the central nervous system, particularly at the blood-brain and brain-cerebrospinal fluid barriers. Phenotype analysis of transgenic mice lacking AQP4 has provided compelling evidence for involvement of AQP4 in cerebral water balance, astrocyte migration, and neural signal transduction. AQP4-null mice have reduced brain swelling and impro...
متن کاملAquaporin-4: A Potential Therapeutic Target for Cerebral Edema
Aquaporin-4 (AQP4) is a family member of water-channel proteins and is dominantly expressed in the foot process of glial cells surrounding capillaries. The predominant expression at the boundaries between cerebral parenchyma and major fluid compartments suggests the function of aquaporin-4 in water transfer into and out of the brain parenchyma. Accumulating evidences have suggested that the dys...
متن کاملMüller Cell Reactivity in Response to Photoreceptor Degeneration in Rats with Defective Polycystin-2
BACKGROUND Retinal degeneration in transgenic rats that express a mutant cilia gene polycystin-2 (CMV-PKD2(1/703)HA) is characterized by initial photoreceptor degeneration and glial activation, followed by vasoregression and neuronal degeneration (Feng et al., 2009, PLoS One 4: e7328). It is unknown whether glial activation contributes to neurovascular degeneration after photoreceptor degenerat...
متن کاملInvolvement of aquaporin-4 in astroglial cell migration and glial scar formation.
Aquaporin-4, the major water-selective channel in astroglia throughout the central nervous system, facilitates water movement into and out of the brain. Here, we identify a novel role for aquaporin-4 in astroglial cell migration, as occurs during glial scar formation. Astroglia cultured from the neocortex of aquaporin-4-null mice had similar morphology, proliferation and adhesion, but markedly ...
متن کاملNew insights into water transport and edema in the central nervous system from phenotype analysis of aquaporin-4 null mice.
Aquaporin-4 (AQP4) is the major water channel in the CNS. Its expression at fluid-tissue barriers (blood-brain and brain-cerebrospinal fluid barriers) throughout the brain and spinal cord suggests a role in water transport under normal and pathological conditions. Phenotype studies of transgenic mice lacking AQP4 have provided evidence for a role of AQP4 in cerebral water balance and neural sig...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 283 22 شماره
صفحات -
تاریخ انتشار 2008